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Abstract 

 
With the development of the Internet, several 

candidate services have emerged for achieving the same 
task, most of which are functionally identical but different 
in non-functional properties. Therefore, these services can 
be classified into different service-quality levels. The 
so-called Quality of Service (QoS) comprises a set of 
non-functional properties that can be used to efficiently 
classify and rank these various services. In this paper, an 
algorithm called CNBP is proposed to address the problem 
of automatically classifying services. The core idea of this 
algorithm is that the weights and biases of a 
back-propagation network are optimized by a hybrid 
optimization based on two algorithms: the Nelder-Mead 
simplex algorithm and the Cuckoo search algorithm. The 
improved back-propagation (BP) classifier is used to 
classify candidate services into different QoS levels. 
Through experiments based on the Quality of Web 
Services dataset and a comparative analysis with 
traditional back-propagation networks and three other 
classification algorithms, we demonstrate that the 
proposed algorithm performs well in terms of its 
classification accuracy and stability.  
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1 Introduction 
 

With the development of network technology, 
numerous Internet-based services have emerged. These 
services belong to a variety of domains, such as commerce, 
science, education, games, etc. In general, for any given 
task, several atomic services can be found with identical 
functions but different non-functional properties. Owing to 
the abundance of candidate services, it is unfeasible for 
users to assess all of these services in order to select the 
best one. Consequently, selecting the best service to satisfy 
the requirements of users is an issue that directly affects 
the performance of service-oriented applications. 

The non-functional properties of web services play an 
important role in service-oriented architectures. These 

non-functional properties act as distinguishing factors, 
among services that are functionally identical. The 
so-called Quality of Service (QoS) comprises a group of 
non-functional properties, including the price, reliability, 
availability, safety, throughput, response time, etc. Each 
property characterizes the service’s quality from a certain 
perspective [1]. Thus, functionally similar services can be 
classified and ranked according to these QoS properties. 
However, artificial classification is complex and time 
consuming. In addition, tagging these services objectively 
and accurately requires that service requestors are familiar 
with a variety of categories. Hence, the automatic 
classification of services has become a common concern 
and warrants in-depth studies. 

In this paper, we propose a method for efficiently 
identifying services with a set of QoS properties by 
employing a back-propagation (BP) neural network that is 
optimized with a hybrid of two algorithms: the Cuckoo 
search algorithm and the Nelder-Mead simplex algorithm. 
We use this hybrid algorithm to optimize the initial 
weights and biases of the BP neural network. Then, the BP 
classifier is used to classify the candidate services into 
different QoS levels. Because this hybrid 
Cuckoo-Nelder-Mead algorithm optimizes a BP neural 
network, we refer to our proposed algorithm as the 
“CNBP.” Through experiments based on the Quality of 
Web Services (QWS) dataset and a comparative analysis 
with the traditional BP network and three other 
classification algorithms, we demonstrate that the 
proposed CNBP performs well in terms of its classification 
accuracy and stability.  

The remainder of this paper is organized as follows. In 
the following section, we provide a detailed overview of 
the related work. Section 3 describes the correlation 
algorithm. Section 4 details the service-classification 
algorithm based on the improved BP neural network. 
Section 5 presents the experimental results and analysis. 
Finally, conclusions and future work are provided in 
Section 6. 

 

2  Related Work 
 
Several researchers have suggested proposals for 

QoS-based service ranking and classification. In order to 



assist users in selecting the service that best satisfies their 
QoS requirements from among several similar services, a 
QoS-based service-ranking and -selection approach was 
presented by Yau et al. [2]. Their approach offers high 
flexibility to the user in terms of the specified requirements. 
It then selects the service that best satisfies these 
requirements, rather than simply recommending a service 

that merely qualifies. Zibin Zheng et al. [3] proposed 
CloudRank, an approach to ranking cloud services in an 
optimal way using a greedy algorithm. CloudRank ranks 
components rather than services, but the algorithm is used 
to rank a set of items and then treats these explicitly rated 
items and the unrated items equally. It does not guarantee 
that the explicitly rated items will be ranked correctly. 
Non-functional properties of web services are considered 
as a multi-criteria mechanism that considers multiple 
non-functional properties as different possible dimensions 
of ranking. The algorithm proposed in [4] takes into 
account the associated importance of non-functional 
properties from the perspective of the users. Because the 
consumers’ QoS requirements are imprecise, uncertain, or 
ambiguous, user’s preferences over some criteria are 
difficult to be quantified. Almulla et al. [5] proposed a 
fuzzy model for ranking real-world web services. 

In order to obtain service ranking, several researchers 
have also proposed methods for service classification. 
Makhlughian et al. [6] presented a method for classifying 
candidate web services according to different QoS levels, 
with respect to the requirements and preferences of the 
user. Their method uses an associative classification 
algorithm and then ranks the most qualified candidate 
services based on their functional quality through semantic 
matching. An approach for automatically classifying 
services was proposed in [7]. This method is based on the 
Rocchio algorithm, and each service is considered as a 
separate document. Text mining and machine-learning 
techniques have been used for service classifications. The 
work [8] proposed a knowledge-based solution to the 
problem by using fuzzy expert systems. Well-known 
classifiers such as k-nearest neighbor classifiers, 
probabilistic neural networks, naïve Bayes classifiers, 
classification and regression trees, TreeNet, decision trees, 
rough sets, and support vector machines have all been used 
to classify real-world web services based on their 
performance [9-12]. However, the authors of these 
proposals do not specify the details in most of their 
experiments, especially when using training sets of 
different sizes. Thus, the overall classification accuracy of 
these methods is difficult to determine. In this paper, we 
propose a solution to this problem by using a BP neural 
network. 

In practical applications, the standard BP algorithm 
cannot meet the demands of several problems. Neural 
networks are relatively inefficient when used to solve 
complex problems. Therefore, to enhance the performance 
of a BP network, numerous scholars have proposed 
training algorithms with a rapid training speed, a global 
optimal solution, and improved generalization 
performance. These have been the main objectives when 
evaluating training algorithms in recent years. To achieve 

these objectives, several meta-heuristic algorithms have 
been put forward. Huang et al. [13] presented an 
iteration-optimization approach for integrating BP neural 
network with a genetic algorithm, and they employed four 
strategies for dealing with the possible deficiency of the 
prediction accuracy resulting from few training patterns. 
Experiments showed that this method avoids becoming 
trapped at a local optimum. To improve the search ability, 
two hybrid algorithms combining two improved 
particle-swarm optimization algorithms individually with 
the BP neural network were proposed to train 
single-hidden-layer feed-forward neural networks in [14]. 
Yi et al. [15] presented an improved BP network optimized 
by the Cuckoo search algorithm. Their proposal involved 
using the Cuckoo search algorithm to simultaneously 
optimize the initial weights and biases of a BP network. In 
this paper, an improved algorithm is proposed based on 
[15]. Since the Cuckoo search algorithm is limited by a 
slow convergence rate and poor accuracy. So, there is some 
space for improving its performance when optimizing a BP 
neural network. We propose a hybrid algorithm based on 
both the Cuckoo search algorithm and the Nelder-Mead 
simplex algorithm for BP optimization. The global 
convergence of the derived algorithm is greatly improved 
by combining the advantages of these two algorithms. 

 

3 Preliminary 
 
Service classification is essentially a problem of 

multi-target recognition. BP neural networks are one of the 
most popular methods for multi-target recognition. 
However, BP networks have several shortcomings, and in 
particular they are limited by a slow convergence rate. In 
order to work around this problem, we propose to use the 
Cuckoo search algorithm and the Nelder-Mead simplex 
algorithm to optimize a BP neural network. The specifics 
of each algorithm are described as follows. 

 
3.1 BP neural network 

The BP neural network algorithm is a multi-layer 
feed-forward network trained with an error-BP algorithm. 
BP networks are among the most widely applied neural 
network models. They can be used to learn and store a 
large number of input-output model mapping relations, 
and there is no requirement to disclose in advance the 
mathematical equations that describe these mapping 
relations. Its learning rule employs the steepest-descent 
method, in which back propagation is used to achieve the 
minimum error sum of the square by regulating the weight 
value and a threshold value for the network. The 
application of the standard BP network model is converted 
to a mathematical optimization problem. In other words, 
the input-output problem of training samples is 
transformed into a non-linear mathematical optimization 
problem. As such, the non-linear mapping ability of a BP 
neural network is considerably strong. BP learning 
algorithms employ a global optimization approach, which 
has good generalization ability and resilient fault tolerance. 
The BP neural network is an important tool for 



investigating classification problems, owing to its robust 
learning ability.  

 
3.2 Cuckoo search algorithm 

 The Cuckoo search algorithm is a novel 
meta-heuristic swarm-intelligence optimization algorithm 
for solving optimization problems [16]. It is inspired by 
the obligate brood parasitism of some species of cuckoo 
birds, which lay their eggs in the nests of other host birds 
(i.e., other species). Some host birds can engage in direct 
competition with these encroaching cuckoos. For example, 
if a host bird finds that the eggs are not its own, it will 
either discard these alien eggs or simply give up its nest, in 
favor of building a new nest elsewhere. Some cuckoo 
species, such as the New World brood- 
parasitic Tapera have evolved in such a way that female 
parasitic cuckoos are often very specialized at mimicking 
the colors and patterns of the eggs for some chosen host 
species. 

In addition, the timing of the egg-laying of some 
species is also critical. Parasitic cuckoos often choose a 
nest in which the host bird just laid its own eggs. In general, 
cuckoo eggs hatch slightly earlier than their host eggs. 
After the first cuckoo chick hatches, the first instinctual 
action of the host bird is to evict the host eggs so as to 
increase the amount of food provided by the host bird for 
the cuckoo chick. A cuckoo chick can mimic the call of the 
host chicks to gain access to more feeding opportunities. 

For a simple description of the Cuckoo search 
algorithm, the author of [17] presents the following three 
assumptions: 

 Each cuckoo lays one egg at a time and dumps its 
egg in a randomly chosen nest; 

 The best nests with the highest quality of eggs will 
continue to the next generation; 

 The number of available host nests is fixed, and 
the egg laid by a cuckoo is discovered by the host 
bird with a probability of a [0,1]P  . In this case, 

the host bird can either discard the egg or give up 
the nest so as to build a completely new nest in a 
new location. 

When generating new solutions ( 1)tx   for cuckoo i , a 
Lévy flight [17] is performed: ( 1) Le vy( )t t

i ix x   =   , 

where 0  is the step size that should be related to the 
scale of the problem at hand. In most cases, we can 

use = (1)O . The product  refers to entry-wise 

multiplications. Essentially, Lévy flights provide a random 
walk, whereas their random steps are drawn from a Lévy 
distribution for large steps: e ~ , (1 3)L vy u t   =   . 

This distribution has an infinite variance with an infinite 
mean. Here, the consecutive jumps or steps of a cuckoo 
bird essentially form a random walking process that obeys 
a power-law step-length distribution with a heavy tail. 

The Cuckoo search algorithm is used to optimize the 
BP neural network's initial weights and biases in order to 
improve the performance of the BP neural network [15]. 
However, the Cuckoo search algorithm is limited by a slow 
convergence rate and poor accuracy. Thus, there is some 

space for improving its performance when optimizing a BP 
neural network. 

 
3.3 Nelder-Mead simplex method 

The Nelder-Mead simplex method is a commonly used 
non-linear optimization technique. It is a well-defined 
numerical method for problems wherein derivatives may be 
unknown. However, the Nelder-Mead technique is a 
heuristic search method that can converge to non-stationary 
points for problems that can be resolved using alternative 
methods. The method uses the concept of a simplex, which 
is a special polytope of N+1 vertices in N dimensions. 
Examples of simplexes include a line segment on a line, a 
triangle on a plane, a tetrahedron in three-dimensional 
space, and so forth. 

The Nelder-Mead technique generates a new test 
position by extrapolating the behavior of the objective 
function measured at each test point arranged as a simplex. 
The algorithm then opts to replace one of these test points 
with the new test point, and so the technique progresses. By 
comparing the value of the objective function of the 
simplex (N+1) vertices, then the point with the worst 
objective function value will be replaced with the new 
point. The simplex constantly being updated through the 
gradual iteration, and the final simplex will be close to the 
optimal solution. The Nelder-Mead simplex method is 
described as follows [18]: 
Step 1 (Initialization): For the minimization problem of 

the non-constrained function of n variables, 0 1, , , nx x x  

are n+1 points on the n dimensional space. Constitute the 
initial "simplex", and calculate the value of the function at 
each vertex of the simplex.  
Step 2 (Order): Order the points according to the values at 

the vertices: 1 2 1( ) ( ) ( )nf x f x f x    . And calculate 

0X , the centroid of all points except 1nX  . 

Step 3 (Reflection): Compute the reflected point, 

0 0 1( )r nX X X X =   . If the reflected point is better 

than the second-worst point, but not better than the best— 

i.e., 1( ) ( ) ( )r nf X f X f X  . Then, obtain a new simplex 

by replacing the worst point 1nX   with the reflected point 

rX , and return to Step 2. 

Step 4 (Expansion): If the reflected point is the best point 

so far—that is, 1( ) ( )rf X f X —then compute the 

expanded point 0 0 1( )e nX X X X =   . If the expanded 

point is better than the reflected point ( ) ( )e rf X f X , then 

obtain a new simplex by replacing the worst point 1nX  with 

the expanded point eX , and return to Step 2. Otherwise, 

proceed to Step 5 (i.e., if the reflected point is not better 
than second-worst point). 

Step 5 (Contraction): If it is certain that ( ) ( )r nf X f X , 

then compute the contracted point: 

0 0 1( )c nX X X X =   . If this contracted point is better 

than the worst point, i.e. 1( ) ( )c nf X f X  , then obtain a 

new simplex by replacing the worst point 1nX  with the 

contracted point cX , and return to Step 2. Otherwise, 

proceed to step 6. 



Step 6 (Reduction). For all but the best point, replace the 

point with 1 1( )i iX X X X=    for all {2, , 1}i n  . 

Return to Step 2. 
The Nelder-Mead simplex algorithm is simple and easy 

to implement, and it has relatively lower resolution 
requirements for the analytic properties of objective 
function.  

To improve the local search ability of the algorithm 
proposed in [15]—that is, the BP network enhanced with a 
Cuckoo search algorithm (hereafter, the “CSBP”)—we 
propose a hybrid optimization based on both the Cuckoo 
algorithm and the Nelder-Mead simplex method for BP 
optimization (hereafter “CN”). Our proposed CNBP 
method effectively overcomes the shortcomings of both the 
Cuckoo algorithm and the Nelder-Mead method. By 
combining the advantages of these two algorithms, the 
global convergence of the derived algorithm is greatly 
improved. 

The objective of our proposed CNBP is to optimize the 
BP neural network. With the CNBP, the BP neural network 
is optimized with the hybrid CN algorithm. Specifically, 
the BP neural network is considered as the objective 
function of the CN. In order to obtain the most appropriate 
weights and biases for initializing the BP network, they are 
first encoded and then optimized with the hybrid 
algorithm. 

 

4 Our Service-classification Approach  
 
The CNBP algorithm is designed to solve 

service-classification problems, with the following main 
steps. (1) The structure of BP network is determined 

according to the input vector and the output vector of the 
problem. Then, we determine the number of input layers, 
output layers, and hidden layers. (2) The BP neural 
network is trained with training data. We obtain the weight 
vector and bias vector according to the nodes of the input, 
output, and hidden layers. All of the weights and biases are 
encoded together to determine the structure of each 
individual in the CN. The Cuckoo search algorithm 
implements an initial population to determine and 
calculate the fitness function. According to the value of the 
fitness function, individuals in the population are arranged 
in ascending order. The first two individuals are directly 
entered into the next cycle and the top quarter of the 
population is optimized with the Nelder-Mead method. 
Then, the entire population is optimized with the Cuckoo 
search algorithm. The results of these three parts are 
assembled together and arranged in ascending order. The 
top individuals, whose number equals the population size, 
are assembled together as a new population. In order to 
find the individual with the best level of fitness, this 
optimization process is repeated until satisfactory weights 
and biases are found. (3) Finally, the trained BP neural 
network is used to classify the services.  

Figure 1 shows a flowchart for the proposed CNBP. 
The proposal contains to basic components: the hybrid CN 
algorithm and the BP neural network. The CN algorithm is 
used to optimize the initial weights and biases of the BP 
neural network. It comprises five tasks: initializing the CN, 
determining the fitness function, applying the Cuckoo 
search algorithm, applying the Nelder-Mead algorithm, and 
assembling the results as a temporary group. A detailed 
description of these five tasks is presented in the following 

 
 

Figure 1. Flowchart for the proposed CNBP 



subsections. 
 

4.1 Initializing the CN 
 When the BP neural network is constructed, we can 

determine the number of weights and biases based on the 
number of input layers, output layers, and hidden layers. 
Then, the connection weights between the input layer and 
the hidden layer, the connection weights between the 
hidden and output layers, and the bias of the hidden and 
output layers are encoded together as an individual for the 
Cuckoo algorithm. 
 
4.2 Determining the fitness function 

The optimization goal is to find the optimal weights 
and biases with which the BP neural network can achieve a 
suitable performance when making predictions. In other 
words, the final goal is to find the set of weights and biases 
that minimizes the global sum of the absolute errors 
between the desired output and the predicted output. We 
define the fitness function as follows: 

 2

1 1

1
( ( ) ( ))

2

qm

o o
k o

F d k y k
m = =

=                        (1) 

where F is the value of the fitness function, m is the 
number of samples, q is the number of output layers, 

and ( )od k and ( )oy k denote the desired output and the 

predicted output of the k-th sample, respectively, for node 
o in the BP network.  
 
4.3 Applying the Cuckoo algorithm 

After calculating the fitness value of all individuals 
and sorting the population according to this fitness value, 
all of the individuals are optimized with the Cuckoo search 
algorithm. To do so, the algorithm proceeds as follows: the 
position is updated, the fitness is computed, and the 
individuals are selected, replaced and eliminated. 
Subsequently, we can obtain a new population with n 
individuals, where n is the size of the original population. 
 
4.4 Applying the Nelder-Mead algorithm 

Some of the individuals (the number of individuals is 
approximately b = n/4) with a lower fitness value are 
removed from the population and optimized with the 
Nelder-Mead algorithm. This task involves four basic 
operations: reflection, expansion, contraction, and 
reduction (see Sec. 3.3, above). As a result, superior points 
are obtained near the best point, and the worst point is 
replaced by a better point. Moreover, the optimal point is 
found in the correct direction. Thus, b individuals are 
generated from this process. 
 
4.5 Assembling the results in a temporary group 

A temporary group is then assembled after the above 
tasks are complete. This group comprises three parts: the 
best two individuals from the initial population, the b 
individuals that result from applying the Nelder-Mead 
algorithm, and the n individuals from the Cuckoo search. 
Thus, the temporary group contains t individuals (t = 
2+b+n). In order to generate the new population, all of the 

individuals are sorted in ascending order, and the top n are 
selected as the new population. 

Based on the above description, the basic steps for the 
CNBP are summarized in Algorithm 1. These steps are 
executed repeatedly until the optimal point is found or until 
the iterations terminate. The optimal weights and biases are 
then used to construct the BP neural network. The service 
data can be classified with the BP network that has been 
trained with the training data. Because the initial weights 
and biases of the BP neural network are optimized with the 
CN algorithm, the BP neural network is expected to offer 
an improved classification performance. 

 

 

 

5  Experiment 
 

In this section, we describe several experiments that we 
conducted on a real-world dataset. In order to verify the 
effectiveness of our proposed algorithm, we compared our 
approach with several commonly used classification 
methods. 
 
5.1 Experimental setup 

We implemented experiments employing MATLAB 
8.3 on an IBM server with an Intel Xeon E5-2670 
eight-core 2.60-GHz CPU and 32 GB of RAM.  

The publicly available Quality of Web Services dataset 
(QWS) [19-21] was used for classifying services with our 
proposed CNBP algorithm. As illustrated in Table 1, each 
web service includes nine quality attributes that describe 
the QoS in a particular area. Services in the QWS dataset 
were classified into four categories: platinum (high quality), 
gold, silver, and bronze (low quality). This classification 
was based on the overall quality rating provided by Web 
Services Resource Framework (WSRF). Each web service 



was grouped into a specific service group. This 
classification is helpful for differentiating between various 
services that offer the same functionality. In the 
experiment, we used a sample experimental dataset 
consisting of 364 functionally similar web services. As 
described in Table 1, the last dimension represents a class 
identifier, and the first nine represent the attributes of the 
respective web services. Among these 364 samples, 
Samples 1-41, 42-141, 142-261, and 262-364 belonged to 
the first, second, third, and fourth category, respectively. 
Each category was then divided into training data and 
testing data. 

 
5.2  Performance of our algorithm 

In order to demonstrate that our proposal offers a 
significant improvement, it was compared with CSBP and 
traditional BP. According to the number of services, 
attributes, and categories, the neurons for the input, output, 
and hidden layers were set as 9, 4, and 8, respectively. The 
four neurons in the output layer represent four species, 
which can be expressed as [1 0 0 0], [0 1 0 0], [0 0 1 0], and 
[0 0 0 1]. Here, each code represents a category. The length 
of the encoded string for each individual was 116, 
according to the following equation: 9×8+8×4+8+4=116. 
Because the neural network uses a logistic function, the 
input range must be within 0 and 1. The property values 
must be normalized for all of the samples in the QWS 
dataset. In this experiment, all the parameters were set as 
follows. For the BP network, the learning rate was lr = 0.2  

and the training error was 0.0001goal = . For the CSBP, 

the BP network used the same parameters as the basic BP, 

and the Cuckoo algorithm had a discovery rate of 0.2ap =  

with a population size of 50NP=  and maximum 

generations of 10Maxgen = . For the CNBP, the Cuckoo 

algorithm used the same parameters as the CSBP, and the 

Nelder-Mead technique had a reflection coefficient of =1 , 

an expansion coefficient of =2 , a contraction coefficient 

of =0.5 , and a reduction coefficient of =0.5 . Each 

algorithm was run 100 times and we recorded the average 
results. 

 In the first experiment, differently sized training 
samples were selected for classification. Between 10% and 
90% of the entire dataset was used for training. For each 

algorithm, the training time was set as =10epochs . As 

shown in Figure 2, the classification accuracy gradually 
improved with an increased number of training samples. 
Moreover, the classification accuracy of the proposed 
CNBP was significantly higher than the other two, 
especially when the training set was small. When only 10% 
of the dataset was used for training, the classification 
accuracy of CNBP was 67.3%, whereas it was a mere 
61.4% and 55.6% for CSBP and BP, respectively. The 
reason for this is that the hybrid CN algorithm converged 
faster and with fewer errors. With an increase in training 
samples, more information can be used. Consequently, the 
classification accuracy of the other two algorithms 
increased significantly (BP: 93.4%, and CSBP: 94.6%). 
Similarly, the classification accuracy of the proposed 
CNBP increased significantly (96.7%), again 
outperforming the other two. 

 

 

 

 

 
 Figure 3 shows the error-convergence status of the 

Cuckoo search algorithm and the hybrid CN algorithm, 

 

Figure 3. Error convergence status of CSBP and CNBP 

 

Figure 2. Classification accuracy with different training sets 

Table 1 QWS parameters 

ID Attribute Description Units 

1 Response Time 
Time taken to send a request and 
receive a response 

ms 

2 Availability 
Number of successful 
invocations/total invocations 

% 

3 Throughput 
Total Number of invocations for 
a given period of time 

invokes/s 

4 Success ability 
Number of response / number of 
request messages 

% 

5 Reliability 
Ratio of the number of error 
messages to total messages 

% 

6 Compliance 
The extent to which a WSDL 
document follows WSDL 
specification 

% 

7 Best Practices 
The extent to which a Web 
service follows WS-I Basic 
Profile 

% 

8 Latency 
Time taken for the server to 
process a given request 

ms 

9 Documentation 
Measure of documentation (i.e. 
description tags) in WSDL 

% 

10 WsRF 
Web Service Relevancy 
Function: a rank for Web  
Service Quality 

% 

11 
Service 
Classification 

Levels representing service 
offering qualities (1 through 4 ) 

Classifier 

 



Because there were too many initial errors to describe them 
easily in the figure, the number of errors was recorded only 
after the first step in the optimization. After the initial 
optimization, there were far fewer initial errors with the 
CN than with the Cuckoo search algorithm. Furthermore, 
the error convergence with CN was very fast during the 
entire optimization process. The hybrid algorithm 
converged quickly and with few errors (indeed coming 
close to 0). The errors from the Cuckoo search algorithm 
converged slowly (from 18 to 6, approximately). Therefore, 
the CN is significantly better than the Cuckoo search 
algorithm in terms of its optimization capability and effect.  

With better initial weights and biases to guide the BP 
network, the performance will be improved. Because the 
initial weights and biases for a traditional BP network are 
random, its effect was demonstrably worse. We also found 
that the gap in the classification accuracy of different 
algorithms became gradually narrower as the number of 
training samples increased. This means that the CNBP 
algorithm has an obvious advantage in cases where there 
are few training samples. 

 

 

 
The second experiment involved analyzing the impact 

of the number of training times on the classification 
accuracy. For this experiment, we trained the classifier 
between 2 and 20 times (i.e., we reiterated Step 2 in 
Algorithm 1 between 2 and 20 times), using 60% of the 
dataset for training. The classification accuracy with 
different training times is shown in Figure 4. The CNBP’s 
classification accuracy was again the highest of the three 
methods. Its superiority is obvious, especially with fewer 
training times. When training the classifier only twice, for 
instance, the proposed algorithm was approximately 78% 
accurate. By contrast, the Cuckoo search algorithm was 
somewhat accurate, at approximately 67%, and the 
traditional BP fell below 60% accuracy, which is a 
considerably inferior.  

The BP algorithm did not have a sufficient number of 
training iterations to guide its subsequent classifications. 
Therefore, it could not achieve the desired results without 
ample training. The CSBP also performed poorly, despite 
optimized weights and biases. Its performance was 
significantly affected by a slow error convergence. The 
proposed CNBP, on the other hand, used a hybrid 
optimization algorithm to find the optimal weights and 
biases, resulting in a superlative performance. Thus, it is 
the most stable of the three methods, even when trained 

only a few times. Nevertheless, as the number of training 
times increased (e.g., with more than 10), the advantages of 
our optimized BP network were not especially obvious. For 
example, with 20 training times, the classification accuracy 
of the proposed CNBP was 96.3%, whereas it was 93.9% 
and 93.7% for the CSBP and BP, respectively.  

In the second experiment, the difference in 
classification time resulting from different training times is 
shown in Figure 5. The classification time increased as the 
classifiers were subjected to more training, and the 
classification time of each method was not significantly 
different. When the classifiers were trained twice, the 
improved BP algorithm indeed higher than that of the 
traditional BP algorithm. The reason for this is that 
optimizing the initial weights and biases requires 
considerable time. The classification time for the CSBP 
was not especially stable, owing to the search mechanism 
of the Cuckoo search algorithm. On the whole, the 
difference between all three algorithms is nominal. Figure 6 
illustrates the classification accuracy for each class, when 
the classifiers were each trained four times. The 
classification accuracy of each class is consistent with the 
overall classification accuracy. The proposed CNBP’s 
classification accuracy for each class was significantly 
higher than the other two. The subtle differences between 
the various types are due to blur and the randomness of the 
samples. 

 

 

 

 

 
 5.3 Comparison with other algorithms 

In order to evaluate the performance of the proposed 
CNBP, we compared it with a naïve Bayes (NB) algorithm 
[11], a k-nearest neighbor (KNN) algorithm [12], and a 

 

Figure 4. Classification accuracy with different training times 

 

Figure 6. Classification accuracy of each category 

Figure 5. Classification time of different training times 



support vector machine (SVM) [12]. In this experiment, we 
used three metrics [10]: accuracy, precision, and recall.  

The accuracy refers to the proportion of correct 
predictions among the total number of predictions. It is 
defined as follows: 

1

1, 1

k

iii

k

iji j

n
Accuracy

n

=

= =

=



                                    (2) 

The precision is the proportion of true positives against 
all of the positive results (i.e., both true positives and false 
positives). It is defined as follows: 
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The recall is the proportion of positive cases that were 
correctly identified, and this metric is defined as follows: 
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In the above three formulas, the Accuracy represents 
the value of the classification accuracy, the iPrecision(c )  

is the precision of the classification for a certain class i, 
and the ( )iRecall c  indicates the recall rate for the 

classification of a certain class i. Furthermore, in these 
formulae, k is the number of services to be classified,

i jn  

indicates the number of services where the correct QoS 
value is i, and the predicted result is j. 

For each algorithm, we performed ten-fold 
cross-validation. For the CNBP, we set the number of 
epochs at 10, and the remaining parameters were the same 
as they were for the previous experiments. The parameters 
for the three contrastive algorithms were kept the same as 
they were in their respective publications (viz., [11] and 
[12]). As can be seen in Table 2, the total classification 
accuracy of the proposed CNBP was significantly higher 
than the other three algorithms (at more than 98%). The 
classification accuracy of the other classifiers was as 
follows: NB: 88.1%; SVM: 81.4%; and KNN: 68.3%. 
Moreover, the classification accuracy of each class also 
confirmed the advantages of the proposed method.  

 

 
Likewise, the proposed CNBP exhibited higher values 

than the other three classification algorithms in terms of 
precision and recall, as shown in Figures 7 and 8, 
respectively. For each QoS level, the classification 
precision and recall for the CNBP was stable and 
maintained equilibrium. However, because of the complex 
training process, the proposed CNBP required more 
training time than the other three algorithms. Therefore, the 
proposed algorithm is somewhat more time consuming. In 
general, however, a web-services classifier is trained 
offline and does not require continuous training. Thus, 

service classification itself does not consume additional 
time. 

 

 

 
 

6  Discussion 
     

The classification performance of the proposed CNBP 
was evaluated in the previous section. Because the initial 
weights and biases of CNBP are optimized by a hybrid 
algorithm, our CNBP outperformed all other algorithms in 
terms of classification accuracy, precision, and recall. In 
addition, CNBP has good ability of self-learning and 
adaptive, and strong robustness, so it is a good solution for 
service classification. However, our algorithm also has 
some shortcomings:  

 There are too many parameters need to be set in 
CNBP, so it is not easy to get the best 
performance;  

 Because our CNBP algorithm is complex and time 
consuming, it is not conducive to real-time 
classification, but only for offline classification.  

In summary, we provide a feasible algorithm for 
service classification. However, there is some room for 
improving the classification accuracy and reducing the 
classification time. 

 
7  Conclusion 

 
In order to address the problem of service classification, 

this paper proposed the CNBP algorithm. With this 
proposal, the weights and biases of a BP network are 

 

Figure 8. Recall of each classification algorithm 

 

Figure 7. Precision of each classification algorithm 

Table 2  Classification accuracy of different algorithms 

Algorithms NB KNN SVM CNBP 

Accuracy 88.1% 68.3% 81.4% 98.4% 

 



optimized with a hybrid optimization based on the 
Nelder-Mead simplex method and the Cuckoo search 
algorithm. This hybrid algorithm effectively overcomes the 
shortcomings of both algorithms. By combining the two 
algorithms, the global convergence is greatly improved. 
Moreover, by using this algorithm, services can be 
effectively classified into different service-quality levels.  

We conducted a series of experiments based on the 
QWS dataset, demonstrating that this algorithm is more 
effective and stable than the CSBP and traditional BP for 
service classification. As described in the experiment, the 
error convergence was considerably fast during the entire 
optimization process with the hybrid algorithm, and it 
converged with few errors. With better initial weights and 
biases to guide the BP network, the proposed CNBP 
achieved a superior performance. A comparative analysis 
with three other classification algorithms demonstrated that 
the proposed CNBP outperformed the other method in 
terms of its classification accuracy, precision, and recall. 
Despite these results, however, there is some room for 
improving the classification accuracy and the training time 
of the proposed method. 

In future research, we shall focus on improving the 
algorithm itself, and we will compare it with other 
algorithms. Moreover, we will attempt to design a service 
classifier that is more accurate and less time consuming. 
Based on the results of this future research, we hope to offer 
contributions in the field of service recommendation. 
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