
Service Classification Based on Improved BP Neural Network

Qiliang Zhu1, Shangguang Wang1*, Qibo Sun1, Ching-Hsien Hsu 2, Fangchun Yang1

1State Key Laboratory of Networking and Switching Technology

1Beijing University of Posts and Telecommunications
1Beijing, China

2 Department of Computer Science and Information Engineering
2Chung Hua University
2Hsinchu 707, Taiwan

{qiliang, sgwang, qbsun}@bupt.edu.cn; chh@chu.edu.tw; fcyang@bupt.edu.cn

*Corresponding author

Abstract

With the development of the Internet, several

candidate services have emerged for achieving the same
task, most of which are functionally identical but different
in non-functional properties. Therefore, these services can
be classified into different service-quality levels. The
so-called Quality of Service (QoS) comprises a set of
non-functional properties that can be used to efficiently
classify and rank these various services. In this paper, an
algorithm called CNBP is proposed to address the problem
of automatically classifying services. The core idea of this
algorithm is that the weights and biases of a
back-propagation network are optimized by a hybrid
optimization based on two algorithms: the Nelder-Mead
simplex algorithm and the Cuckoo search algorithm. The
improved back-propagation (BP) classifier is used to
classify candidate services into different QoS levels.
Through experiments based on the Quality of Web
Services dataset and a comparative analysis with
traditional back-propagation networks and three other
classification algorithms, we demonstrate that the
proposed algorithm performs well in terms of its
classification accuracy and stability.

Keywords: service; QoS; classification; BP

1 Introduction

With the development of network technology,
numerous Internet-based services have emerged. These
services belong to a variety of domains, such as commerce,
science, education, games, etc. In general, for any given
task, several atomic services can be found with identical
functions but different non-functional properties. Owing to
the abundance of candidate services, it is unfeasible for
users to assess all of these services in order to select the
best one. Consequently, selecting the best service to satisfy
the requirements of users is an issue that directly affects
the performance of service-oriented applications.

The non-functional properties of web services play an
important role in service-oriented architectures. These

non-functional properties act as distinguishing factors,
among services that are functionally identical. The
so-called Quality of Service (QoS) comprises a group of
non-functional properties, including the price, reliability,
availability, safety, throughput, response time, etc. Each
property characterizes the service’s quality from a certain
perspective [1]. Thus, functionally similar services can be
classified and ranked according to these QoS properties.
However, artificial classification is complex and time
consuming. In addition, tagging these services objectively
and accurately requires that service requestors are familiar
with a variety of categories. Hence, the automatic
classification of services has become a common concern
and warrants in-depth studies.

In this paper, we propose a method for efficiently
identifying services with a set of QoS properties by
employing a back-propagation (BP) neural network that is
optimized with a hybrid of two algorithms: the Cuckoo
search algorithm and the Nelder-Mead simplex algorithm.
We use this hybrid algorithm to optimize the initial
weights and biases of the BP neural network. Then, the BP
classifier is used to classify the candidate services into
different QoS levels. Because this hybrid
Cuckoo-Nelder-Mead algorithm optimizes a BP neural
network, we refer to our proposed algorithm as the
“CNBP.” Through experiments based on the Quality of
Web Services (QWS) dataset and a comparative analysis
with the traditional BP network and three other
classification algorithms, we demonstrate that the
proposed CNBP performs well in terms of its classification
accuracy and stability.

The remainder of this paper is organized as follows. In
the following section, we provide a detailed overview of
the related work. Section 3 describes the correlation
algorithm. Section 4 details the service-classification
algorithm based on the improved BP neural network.
Section 5 presents the experimental results and analysis.
Finally, conclusions and future work are provided in
Section 6.

2 Related Work

Several researchers have suggested proposals for

QoS-based service ranking and classification. In order to

assist users in selecting the service that best satisfies their
QoS requirements from among several similar services, a
QoS-based service-ranking and -selection approach was
presented by Yau et al. [2]. Their approach offers high
flexibility to the user in terms of the specified requirements.
It then selects the service that best satisfies these
requirements, rather than simply recommending a service

that merely qualifies. Zibin Zheng et al. [3] proposed
CloudRank, an approach to ranking cloud services in an
optimal way using a greedy algorithm. CloudRank ranks
components rather than services, but the algorithm is used
to rank a set of items and then treats these explicitly rated
items and the unrated items equally. It does not guarantee
that the explicitly rated items will be ranked correctly.
Non-functional properties of web services are considered
as a multi-criteria mechanism that considers multiple
non-functional properties as different possible dimensions
of ranking. The algorithm proposed in [4] takes into
account the associated importance of non-functional
properties from the perspective of the users. Because the
consumers’ QoS requirements are imprecise, uncertain, or
ambiguous, user’s preferences over some criteria are
difficult to be quantified. Almulla et al. [5] proposed a
fuzzy model for ranking real-world web services.

In order to obtain service ranking, several researchers
have also proposed methods for service classification.
Makhlughian et al. [6] presented a method for classifying
candidate web services according to different QoS levels,
with respect to the requirements and preferences of the
user. Their method uses an associative classification
algorithm and then ranks the most qualified candidate
services based on their functional quality through semantic
matching. An approach for automatically classifying
services was proposed in [7]. This method is based on the
Rocchio algorithm, and each service is considered as a
separate document. Text mining and machine-learning
techniques have been used for service classifications. The
work [8] proposed a knowledge-based solution to the
problem by using fuzzy expert systems. Well-known
classifiers such as k-nearest neighbor classifiers,
probabilistic neural networks, naïve Bayes classifiers,
classification and regression trees, TreeNet, decision trees,
rough sets, and support vector machines have all been used
to classify real-world web services based on their
performance [9-12]. However, the authors of these
proposals do not specify the details in most of their
experiments, especially when using training sets of
different sizes. Thus, the overall classification accuracy of
these methods is difficult to determine. In this paper, we
propose a solution to this problem by using a BP neural
network.

In practical applications, the standard BP algorithm
cannot meet the demands of several problems. Neural
networks are relatively inefficient when used to solve
complex problems. Therefore, to enhance the performance
of a BP network, numerous scholars have proposed
training algorithms with a rapid training speed, a global
optimal solution, and improved generalization
performance. These have been the main objectives when
evaluating training algorithms in recent years. To achieve

these objectives, several meta-heuristic algorithms have
been put forward. Huang et al. [13] presented an
iteration-optimization approach for integrating BP neural
network with a genetic algorithm, and they employed four
strategies for dealing with the possible deficiency of the
prediction accuracy resulting from few training patterns.
Experiments showed that this method avoids becoming
trapped at a local optimum. To improve the search ability,
two hybrid algorithms combining two improved
particle-swarm optimization algorithms individually with
the BP neural network were proposed to train
single-hidden-layer feed-forward neural networks in [14].
Yi et al. [15] presented an improved BP network optimized
by the Cuckoo search algorithm. Their proposal involved
using the Cuckoo search algorithm to simultaneously
optimize the initial weights and biases of a BP network. In
this paper, an improved algorithm is proposed based on
[15]. Since the Cuckoo search algorithm is limited by a
slow convergence rate and poor accuracy. So, there is some
space for improving its performance when optimizing a BP
neural network. We propose a hybrid algorithm based on
both the Cuckoo search algorithm and the Nelder-Mead
simplex algorithm for BP optimization. The global
convergence of the derived algorithm is greatly improved
by combining the advantages of these two algorithms.

3 Preliminary

Service classification is essentially a problem of

multi-target recognition. BP neural networks are one of the
most popular methods for multi-target recognition.
However, BP networks have several shortcomings, and in
particular they are limited by a slow convergence rate. In
order to work around this problem, we propose to use the
Cuckoo search algorithm and the Nelder-Mead simplex
algorithm to optimize a BP neural network. The specifics
of each algorithm are described as follows.

3.1 BP neural network

The BP neural network algorithm is a multi-layer
feed-forward network trained with an error-BP algorithm.
BP networks are among the most widely applied neural
network models. They can be used to learn and store a
large number of input-output model mapping relations,
and there is no requirement to disclose in advance the
mathematical equations that describe these mapping
relations. Its learning rule employs the steepest-descent
method, in which back propagation is used to achieve the
minimum error sum of the square by regulating the weight
value and a threshold value for the network. The
application of the standard BP network model is converted
to a mathematical optimization problem. In other words,
the input-output problem of training samples is
transformed into a non-linear mathematical optimization
problem. As such, the non-linear mapping ability of a BP
neural network is considerably strong. BP learning
algorithms employ a global optimization approach, which
has good generalization ability and resilient fault tolerance.
The BP neural network is an important tool for

investigating classification problems, owing to its robust
learning ability.

3.2 Cuckoo search algorithm

 The Cuckoo search algorithm is a novel
meta-heuristic swarm-intelligence optimization algorithm
for solving optimization problems [16]. It is inspired by
the obligate brood parasitism of some species of cuckoo
birds, which lay their eggs in the nests of other host birds
(i.e., other species). Some host birds can engage in direct
competition with these encroaching cuckoos. For example,
if a host bird finds that the eggs are not its own, it will
either discard these alien eggs or simply give up its nest, in
favor of building a new nest elsewhere. Some cuckoo
species, such as the New World brood-
parasitic Tapera have evolved in such a way that female
parasitic cuckoos are often very specialized at mimicking
the colors and patterns of the eggs for some chosen host
species.

In addition, the timing of the egg-laying of some
species is also critical. Parasitic cuckoos often choose a
nest in which the host bird just laid its own eggs. In general,
cuckoo eggs hatch slightly earlier than their host eggs.
After the first cuckoo chick hatches, the first instinctual
action of the host bird is to evict the host eggs so as to
increase the amount of food provided by the host bird for
the cuckoo chick. A cuckoo chick can mimic the call of the
host chicks to gain access to more feeding opportunities.

For a simple description of the Cuckoo search
algorithm, the author of [17] presents the following three
assumptions:

 Each cuckoo lays one egg at a time and dumps its
egg in a randomly chosen nest;

 The best nests with the highest quality of eggs will
continue to the next generation;

 The number of available host nests is fixed, and
the egg laid by a cuckoo is discovered by the host
bird with a probability of a [0,1]P . In this case,

the host bird can either discard the egg or give up
the nest so as to build a completely new nest in a
new location.

When generating new solutions (1)tx for cuckoo i , a
Lévy flight [17] is performed: (1) Le vy()t t

i ix x = ,

where 0 is the step size that should be related to the
scale of the problem at hand. In most cases, we can

use = (1)O . The product refers to entry-wise

multiplications. Essentially, Lévy flights provide a random
walk, whereas their random steps are drawn from a Lévy
distribution for large steps: e ~ , (1 3)L vy u t = .

This distribution has an infinite variance with an infinite
mean. Here, the consecutive jumps or steps of a cuckoo
bird essentially form a random walking process that obeys
a power-law step-length distribution with a heavy tail.

The Cuckoo search algorithm is used to optimize the
BP neural network's initial weights and biases in order to
improve the performance of the BP neural network [15].
However, the Cuckoo search algorithm is limited by a slow
convergence rate and poor accuracy. Thus, there is some

space for improving its performance when optimizing a BP
neural network.

3.3 Nelder-Mead simplex method

The Nelder-Mead simplex method is a commonly used
non-linear optimization technique. It is a well-defined
numerical method for problems wherein derivatives may be
unknown. However, the Nelder-Mead technique is a
heuristic search method that can converge to non-stationary
points for problems that can be resolved using alternative
methods. The method uses the concept of a simplex, which
is a special polytope of N+1 vertices in N dimensions.
Examples of simplexes include a line segment on a line, a
triangle on a plane, a tetrahedron in three-dimensional
space, and so forth.

The Nelder-Mead technique generates a new test
position by extrapolating the behavior of the objective
function measured at each test point arranged as a simplex.
The algorithm then opts to replace one of these test points
with the new test point, and so the technique progresses. By
comparing the value of the objective function of the
simplex (N+1) vertices, then the point with the worst
objective function value will be replaced with the new
point. The simplex constantly being updated through the
gradual iteration, and the final simplex will be close to the
optimal solution. The Nelder-Mead simplex method is
described as follows [18]:
Step 1 (Initialization): For the minimization problem of

the non-constrained function of n variables, 0 1, , , nx x x

are n+1 points on the n dimensional space. Constitute the
initial "simplex", and calculate the value of the function at
each vertex of the simplex.
Step 2 (Order): Order the points according to the values at

the vertices: 1 2 1() () ()nf x f x f x . And calculate

0X , the centroid of all points except 1nX .

Step 3 (Reflection): Compute the reflected point,

0 0 1()r nX X X X = . If the reflected point is better

than the second-worst point, but not better than the best—

i.e., 1() () ()r nf X f X f X . Then, obtain a new simplex

by replacing the worst point 1nX with the reflected point

rX , and return to Step 2.

Step 4 (Expansion): If the reflected point is the best point

so far—that is, 1() ()rf X f X —then compute the

expanded point 0 0 1()e nX X X X = . If the expanded

point is better than the reflected point () ()e rf X f X , then

obtain a new simplex by replacing the worst point 1nX with

the expanded point eX , and return to Step 2. Otherwise,

proceed to Step 5 (i.e., if the reflected point is not better
than second-worst point).

Step 5 (Contraction): If it is certain that () ()r nf X f X ,

then compute the contracted point:

0 0 1()c nX X X X = . If this contracted point is better

than the worst point, i.e. 1() ()c nf X f X , then obtain a

new simplex by replacing the worst point 1nX with the

contracted point cX , and return to Step 2. Otherwise,

proceed to step 6.

Step 6 (Reduction). For all but the best point, replace the

point with 1 1()i iX X X X= for all {2, , 1}i n .

Return to Step 2.
The Nelder-Mead simplex algorithm is simple and easy

to implement, and it has relatively lower resolution
requirements for the analytic properties of objective
function.

To improve the local search ability of the algorithm
proposed in [15]—that is, the BP network enhanced with a
Cuckoo search algorithm (hereafter, the “CSBP”)—we
propose a hybrid optimization based on both the Cuckoo
algorithm and the Nelder-Mead simplex method for BP
optimization (hereafter “CN”). Our proposed CNBP
method effectively overcomes the shortcomings of both the
Cuckoo algorithm and the Nelder-Mead method. By
combining the advantages of these two algorithms, the
global convergence of the derived algorithm is greatly
improved.

The objective of our proposed CNBP is to optimize the
BP neural network. With the CNBP, the BP neural network
is optimized with the hybrid CN algorithm. Specifically,
the BP neural network is considered as the objective
function of the CN. In order to obtain the most appropriate
weights and biases for initializing the BP network, they are
first encoded and then optimized with the hybrid
algorithm.

4 Our Service-classification Approach

The CNBP algorithm is designed to solve

service-classification problems, with the following main
steps. (1) The structure of BP network is determined

according to the input vector and the output vector of the
problem. Then, we determine the number of input layers,
output layers, and hidden layers. (2) The BP neural
network is trained with training data. We obtain the weight
vector and bias vector according to the nodes of the input,
output, and hidden layers. All of the weights and biases are
encoded together to determine the structure of each
individual in the CN. The Cuckoo search algorithm
implements an initial population to determine and
calculate the fitness function. According to the value of the
fitness function, individuals in the population are arranged
in ascending order. The first two individuals are directly
entered into the next cycle and the top quarter of the
population is optimized with the Nelder-Mead method.
Then, the entire population is optimized with the Cuckoo
search algorithm. The results of these three parts are
assembled together and arranged in ascending order. The
top individuals, whose number equals the population size,
are assembled together as a new population. In order to
find the individual with the best level of fitness, this
optimization process is repeated until satisfactory weights
and biases are found. (3) Finally, the trained BP neural
network is used to classify the services.

Figure 1 shows a flowchart for the proposed CNBP.
The proposal contains to basic components: the hybrid CN
algorithm and the BP neural network. The CN algorithm is
used to optimize the initial weights and biases of the BP
neural network. It comprises five tasks: initializing the CN,
determining the fitness function, applying the Cuckoo
search algorithm, applying the Nelder-Mead algorithm, and
assembling the results as a temporary group. A detailed
description of these five tasks is presented in the following

Figure 1. Flowchart for the proposed CNBP

subsections.

4.1 Initializing the CN
 When the BP neural network is constructed, we can

determine the number of weights and biases based on the
number of input layers, output layers, and hidden layers.
Then, the connection weights between the input layer and
the hidden layer, the connection weights between the
hidden and output layers, and the bias of the hidden and
output layers are encoded together as an individual for the
Cuckoo algorithm.

4.2 Determining the fitness function

The optimization goal is to find the optimal weights
and biases with which the BP neural network can achieve a
suitable performance when making predictions. In other
words, the final goal is to find the set of weights and biases
that minimizes the global sum of the absolute errors
between the desired output and the predicted output. We
define the fitness function as follows:

 2

1 1

1
(() ())

2

qm

o o
k o

F d k y k
m = =

= (1)

where F is the value of the fitness function, m is the
number of samples, q is the number of output layers,

and ()od k and ()oy k denote the desired output and the

predicted output of the k-th sample, respectively, for node
o in the BP network.

4.3 Applying the Cuckoo algorithm

After calculating the fitness value of all individuals
and sorting the population according to this fitness value,
all of the individuals are optimized with the Cuckoo search
algorithm. To do so, the algorithm proceeds as follows: the
position is updated, the fitness is computed, and the
individuals are selected, replaced and eliminated.
Subsequently, we can obtain a new population with n
individuals, where n is the size of the original population.

4.4 Applying the Nelder-Mead algorithm

Some of the individuals (the number of individuals is
approximately b = n/4) with a lower fitness value are
removed from the population and optimized with the
Nelder-Mead algorithm. This task involves four basic
operations: reflection, expansion, contraction, and
reduction (see Sec. 3.3, above). As a result, superior points
are obtained near the best point, and the worst point is
replaced by a better point. Moreover, the optimal point is
found in the correct direction. Thus, b individuals are
generated from this process.

4.5 Assembling the results in a temporary group

A temporary group is then assembled after the above
tasks are complete. This group comprises three parts: the
best two individuals from the initial population, the b
individuals that result from applying the Nelder-Mead
algorithm, and the n individuals from the Cuckoo search.
Thus, the temporary group contains t individuals (t =
2+b+n). In order to generate the new population, all of the

individuals are sorted in ascending order, and the top n are
selected as the new population.

Based on the above description, the basic steps for the
CNBP are summarized in Algorithm 1. These steps are
executed repeatedly until the optimal point is found or until
the iterations terminate. The optimal weights and biases are
then used to construct the BP neural network. The service
data can be classified with the BP network that has been
trained with the training data. Because the initial weights
and biases of the BP neural network are optimized with the
CN algorithm, the BP neural network is expected to offer
an improved classification performance.

5 Experiment

In this section, we describe several experiments that we
conducted on a real-world dataset. In order to verify the
effectiveness of our proposed algorithm, we compared our
approach with several commonly used classification
methods.

5.1 Experimental setup

We implemented experiments employing MATLAB
8.3 on an IBM server with an Intel Xeon E5-2670
eight-core 2.60-GHz CPU and 32 GB of RAM.

The publicly available Quality of Web Services dataset
(QWS) [19-21] was used for classifying services with our
proposed CNBP algorithm. As illustrated in Table 1, each
web service includes nine quality attributes that describe
the QoS in a particular area. Services in the QWS dataset
were classified into four categories: platinum (high quality),
gold, silver, and bronze (low quality). This classification
was based on the overall quality rating provided by Web
Services Resource Framework (WSRF). Each web service

was grouped into a specific service group. This
classification is helpful for differentiating between various
services that offer the same functionality. In the
experiment, we used a sample experimental dataset
consisting of 364 functionally similar web services. As
described in Table 1, the last dimension represents a class
identifier, and the first nine represent the attributes of the
respective web services. Among these 364 samples,
Samples 1-41, 42-141, 142-261, and 262-364 belonged to
the first, second, third, and fourth category, respectively.
Each category was then divided into training data and
testing data.

5.2 Performance of our algorithm

In order to demonstrate that our proposal offers a
significant improvement, it was compared with CSBP and
traditional BP. According to the number of services,
attributes, and categories, the neurons for the input, output,
and hidden layers were set as 9, 4, and 8, respectively. The
four neurons in the output layer represent four species,
which can be expressed as [1 0 0 0], [0 1 0 0], [0 0 1 0], and
[0 0 0 1]. Here, each code represents a category. The length
of the encoded string for each individual was 116,
according to the following equation: 9×8+8×4+8+4=116.
Because the neural network uses a logistic function, the
input range must be within 0 and 1. The property values
must be normalized for all of the samples in the QWS
dataset. In this experiment, all the parameters were set as
follows. For the BP network, the learning rate was lr = 0.2

and the training error was 0.0001goal = . For the CSBP,

the BP network used the same parameters as the basic BP,

and the Cuckoo algorithm had a discovery rate of 0.2ap =

with a population size of 50NP= and maximum

generations of 10Maxgen = . For the CNBP, the Cuckoo

algorithm used the same parameters as the CSBP, and the

Nelder-Mead technique had a reflection coefficient of =1 ,

an expansion coefficient of =2 , a contraction coefficient

of =0.5 , and a reduction coefficient of =0.5 . Each

algorithm was run 100 times and we recorded the average
results.

 In the first experiment, differently sized training
samples were selected for classification. Between 10% and
90% of the entire dataset was used for training. For each

algorithm, the training time was set as =10epochs . As

shown in Figure 2, the classification accuracy gradually
improved with an increased number of training samples.
Moreover, the classification accuracy of the proposed
CNBP was significantly higher than the other two,
especially when the training set was small. When only 10%
of the dataset was used for training, the classification
accuracy of CNBP was 67.3%, whereas it was a mere
61.4% and 55.6% for CSBP and BP, respectively. The
reason for this is that the hybrid CN algorithm converged
faster and with fewer errors. With an increase in training
samples, more information can be used. Consequently, the
classification accuracy of the other two algorithms
increased significantly (BP: 93.4%, and CSBP: 94.6%).
Similarly, the classification accuracy of the proposed
CNBP increased significantly (96.7%), again
outperforming the other two.

 Figure 3 shows the error-convergence status of the

Cuckoo search algorithm and the hybrid CN algorithm,

Figure 3. Error convergence status of CSBP and CNBP

Figure 2. Classification accuracy with different training sets

Table 1 QWS parameters

ID Attribute Description Units

1 Response Time
Time taken to send a request and
receive a response

ms

2 Availability
Number of successful
invocations/total invocations

%

3 Throughput
Total Number of invocations for
a given period of time

invokes/s

4 Success ability
Number of response / number of
request messages

%

5 Reliability
Ratio of the number of error
messages to total messages

%

6 Compliance
The extent to which a WSDL
document follows WSDL
specification

%

7 Best Practices
The extent to which a Web
service follows WS-I Basic
Profile

%

8 Latency
Time taken for the server to
process a given request

ms

9 Documentation
Measure of documentation (i.e.
description tags) in WSDL

%

10 WsRF
Web Service Relevancy
Function: a rank for Web
Service Quality

%

11
Service
Classification

Levels representing service
offering qualities (1 through 4)

Classifier

Because there were too many initial errors to describe them
easily in the figure, the number of errors was recorded only
after the first step in the optimization. After the initial
optimization, there were far fewer initial errors with the
CN than with the Cuckoo search algorithm. Furthermore,
the error convergence with CN was very fast during the
entire optimization process. The hybrid algorithm
converged quickly and with few errors (indeed coming
close to 0). The errors from the Cuckoo search algorithm
converged slowly (from 18 to 6, approximately). Therefore,
the CN is significantly better than the Cuckoo search
algorithm in terms of its optimization capability and effect.

With better initial weights and biases to guide the BP
network, the performance will be improved. Because the
initial weights and biases for a traditional BP network are
random, its effect was demonstrably worse. We also found
that the gap in the classification accuracy of different
algorithms became gradually narrower as the number of
training samples increased. This means that the CNBP
algorithm has an obvious advantage in cases where there
are few training samples.

The second experiment involved analyzing the impact

of the number of training times on the classification
accuracy. For this experiment, we trained the classifier
between 2 and 20 times (i.e., we reiterated Step 2 in
Algorithm 1 between 2 and 20 times), using 60% of the
dataset for training. The classification accuracy with
different training times is shown in Figure 4. The CNBP’s
classification accuracy was again the highest of the three
methods. Its superiority is obvious, especially with fewer
training times. When training the classifier only twice, for
instance, the proposed algorithm was approximately 78%
accurate. By contrast, the Cuckoo search algorithm was
somewhat accurate, at approximately 67%, and the
traditional BP fell below 60% accuracy, which is a
considerably inferior.

The BP algorithm did not have a sufficient number of
training iterations to guide its subsequent classifications.
Therefore, it could not achieve the desired results without
ample training. The CSBP also performed poorly, despite
optimized weights and biases. Its performance was
significantly affected by a slow error convergence. The
proposed CNBP, on the other hand, used a hybrid
optimization algorithm to find the optimal weights and
biases, resulting in a superlative performance. Thus, it is
the most stable of the three methods, even when trained

only a few times. Nevertheless, as the number of training
times increased (e.g., with more than 10), the advantages of
our optimized BP network were not especially obvious. For
example, with 20 training times, the classification accuracy
of the proposed CNBP was 96.3%, whereas it was 93.9%
and 93.7% for the CSBP and BP, respectively.

In the second experiment, the difference in
classification time resulting from different training times is
shown in Figure 5. The classification time increased as the
classifiers were subjected to more training, and the
classification time of each method was not significantly
different. When the classifiers were trained twice, the
improved BP algorithm indeed higher than that of the
traditional BP algorithm. The reason for this is that
optimizing the initial weights and biases requires
considerable time. The classification time for the CSBP
was not especially stable, owing to the search mechanism
of the Cuckoo search algorithm. On the whole, the
difference between all three algorithms is nominal. Figure 6
illustrates the classification accuracy for each class, when
the classifiers were each trained four times. The
classification accuracy of each class is consistent with the
overall classification accuracy. The proposed CNBP’s
classification accuracy for each class was significantly
higher than the other two. The subtle differences between
the various types are due to blur and the randomness of the
samples.

 5.3 Comparison with other algorithms

In order to evaluate the performance of the proposed
CNBP, we compared it with a naïve Bayes (NB) algorithm
[11], a k-nearest neighbor (KNN) algorithm [12], and a

Figure 4. Classification accuracy with different training times

Figure 6. Classification accuracy of each category

Figure 5. Classification time of different training times

support vector machine (SVM) [12]. In this experiment, we
used three metrics [10]: accuracy, precision, and recall.

The accuracy refers to the proportion of correct
predictions among the total number of predictions. It is
defined as follows:

1

1, 1

k

iii

k

iji j

n
Accuracy

n

=

= =

=

 (2)

The precision is the proportion of true positives against
all of the positive results (i.e., both true positives and false
positives). It is defined as follows:

1

() ii
i k

jij

n
Precision C

n
=

=

 (3)

The recall is the proportion of positive cases that were
correctly identified, and this metric is defined as follows:

1

() ii
i k

ijj

n
Recall C

n
=

=

 (4)

In the above three formulas, the Accuracy represents
the value of the classification accuracy, the iPrecision(c)

is the precision of the classification for a certain class i,
and the ()iRecall c indicates the recall rate for the

classification of a certain class i. Furthermore, in these
formulae, k is the number of services to be classified,

i jn

indicates the number of services where the correct QoS
value is i, and the predicted result is j.

For each algorithm, we performed ten-fold
cross-validation. For the CNBP, we set the number of
epochs at 10, and the remaining parameters were the same
as they were for the previous experiments. The parameters
for the three contrastive algorithms were kept the same as
they were in their respective publications (viz., [11] and
[12]). As can be seen in Table 2, the total classification
accuracy of the proposed CNBP was significantly higher
than the other three algorithms (at more than 98%). The
classification accuracy of the other classifiers was as
follows: NB: 88.1%; SVM: 81.4%; and KNN: 68.3%.
Moreover, the classification accuracy of each class also
confirmed the advantages of the proposed method.

Likewise, the proposed CNBP exhibited higher values

than the other three classification algorithms in terms of
precision and recall, as shown in Figures 7 and 8,
respectively. For each QoS level, the classification
precision and recall for the CNBP was stable and
maintained equilibrium. However, because of the complex
training process, the proposed CNBP required more
training time than the other three algorithms. Therefore, the
proposed algorithm is somewhat more time consuming. In
general, however, a web-services classifier is trained
offline and does not require continuous training. Thus,

service classification itself does not consume additional
time.

6 Discussion

The classification performance of the proposed CNBP
was evaluated in the previous section. Because the initial
weights and biases of CNBP are optimized by a hybrid
algorithm, our CNBP outperformed all other algorithms in
terms of classification accuracy, precision, and recall. In
addition, CNBP has good ability of self-learning and
adaptive, and strong robustness, so it is a good solution for
service classification. However, our algorithm also has
some shortcomings:

 There are too many parameters need to be set in
CNBP, so it is not easy to get the best
performance;

 Because our CNBP algorithm is complex and time
consuming, it is not conducive to real-time
classification, but only for offline classification.

In summary, we provide a feasible algorithm for
service classification. However, there is some room for
improving the classification accuracy and reducing the
classification time.

7 Conclusion

In order to address the problem of service classification,

this paper proposed the CNBP algorithm. With this
proposal, the weights and biases of a BP network are

Figure 8. Recall of each classification algorithm

Figure 7. Precision of each classification algorithm

Table 2 Classification accuracy of different algorithms

Algorithms NB KNN SVM CNBP

Accuracy 88.1% 68.3% 81.4% 98.4%

optimized with a hybrid optimization based on the
Nelder-Mead simplex method and the Cuckoo search
algorithm. This hybrid algorithm effectively overcomes the
shortcomings of both algorithms. By combining the two
algorithms, the global convergence is greatly improved.
Moreover, by using this algorithm, services can be
effectively classified into different service-quality levels.

We conducted a series of experiments based on the
QWS dataset, demonstrating that this algorithm is more
effective and stable than the CSBP and traditional BP for
service classification. As described in the experiment, the
error convergence was considerably fast during the entire
optimization process with the hybrid algorithm, and it
converged with few errors. With better initial weights and
biases to guide the BP network, the proposed CNBP
achieved a superior performance. A comparative analysis
with three other classification algorithms demonstrated that
the proposed CNBP outperformed the other method in
terms of its classification accuracy, precision, and recall.
Despite these results, however, there is some room for
improving the classification accuracy and the training time
of the proposed method.

In future research, we shall focus on improving the
algorithm itself, and we will compare it with other
algorithms. Moreover, we will attempt to design a service
classifier that is more accurate and less time consuming.
Based on the results of this future research, we hope to offer
contributions in the field of service recommendation.

Acknowledgment

This work is supported by the National Natural Science
Foundation of China under Grant Nos. 61202435 and
61272521, the Natural Science Foundation of Beijing
under Grant No. 4132048, and SRFDP (20110005130001).
Shangguang Wang is the corresponding author.

References

[1] Ran, Shuping, A model for web services discovery

with QoS, ACM Sigecom exchanges, Vol. 9, No. 1,
2003, pp.1-10.

[2] Yau, Stephen S., and Yin Yin, Qos-based service
ranking and selection for service-based systems, Proc.
IEEE Services Computing, Washington, United States,
July, 2011, pp.56-63

[3] Zheng Zibin, Yilei Zhang, and Michael R. Lyu,
CloudRank: A QoS-Driven Component Ranking
Framework for Cloud Computing, Proc. Reliable

Distributed Systems, New Delhi, Punjab, India, Oct.,
2010, pp.184-193.

[4] Toma, Ioan, Roman, Dumitru, Fensel, Dieter, Sapkota,
Brahmanada, and Gomez, Juan Miguel, A
Multi-criteria Service Ranking Approach Based on
Non-Functional Properties Rules Evaluation, Proc.
International conference on Service-Oriented
Computing, Vienna, Austria, Sep., 2007, pp.435-441.

[5] Almulla, Mohammed, Kawthar Almatori, and Hamdi
Yahyaoui, A qos-based fuzzy model for ranking real

world web services, Proc. IEEE Web Services,
Washington, USA, July, 2011, pp.203-210.

[6] Makhlughian, Molood, Seyyed Mohsen Hashemi,
Yousef Rastegari, and Emad Pejman, Web service
selection based on ranking of qos using associative
classification, International Journal on Web Service
Computing, Vol. 9, No. 1, 2012, pp.1-14.

[7] Crasso, Marco, Alejandro Zunino, and Marcelo
Campo, Awsc: An approach to web service
classification based on machine learning
techniques, Revista Iberoamericana de Inteligencia
Artificial , Vol. 12, No. 37, 2008, pp.25-36.

[8] Almulla, Mohammed A., On Classification of Web
Services Using Fuzzy Expert System, Journal of
Algorithms & Computational Technology, Vol. 6, No.
4, 2012, pp.673-686.

[9] Sonawani, Shilpa, and Debajyoti Mukhopadhyay, A
Decision Tree Approach to Classify Web Services
using Quality Parameters, Proc. The International
Conference on Web Engineering and Application,
Bhubaneshwar, India, Dec., 2013, pp.1-9.

[10] Own, Hala S., and Hamdi Yahyaoui, Rough set based
classification of real world Web services, Information
Systems Frontiers , 2014, pp.1-11.

[11] Mohanty, Ramakanta, V. Ravi, and M. R. Patra,
Classification of Web Services Using Bayesian
Network, Journal of Software Engineering and
Applications ,Vol. 5, No. 4, 2012, pp.291-296.

[12] Mustafa, A. Syed, and Y. S. Kumaraswamy,
Performance Evaluation of Web-services
Classification, Indian Journal of Science and
Technology, Vol. 7, No. 10, 2014, pp.1674-1681.

[13] Huang, Han-Xiong, Jiong-Cheng Li, and
Cheng-Long Xiao, A proposed iteration optimization
approach integrating back propagation neural network
with genetic algorithm, Expert Systems with
Applications, Vol. 42, No. 1, 2015, pp.146-155.

[14] Han, Fei, and Jian-Sheng Zhu, Improved Particle
Swarm Optimization Combined with Backpropagation
for Feedforward Neural Networks, International
Journal of Intelligent Systems, Vol. 28, No. 3, 2013,
pp.271-288.

[15] Yi, Jiao-hong, Wei-hong Xu, and Yuan-tao Chen,
Novel Back Propagation Optimization by Cuckoo
Search Algorithm, The Scientific World Journal, 2014,
doi:10.1155/2014/878262

[16] Gandomi, Amir Hossein, Xin-She Yang, and Amir
Hossein Alavi, Cuckoo search algorithm: a
metaheuristic approach to solve structural
optimization problems, Engineering with Computers,
Vol. 29, No. 1, 2013, pp.17-35.

[17] Yang, Xin-She, and Suash Deb, Cuckoo search via
Lévy flights, Proc. World Congress on Nature &
Biologically Inspired Computing, Coimbatore, India,
Dec., 2009, pp.210-214.

[18] Singer, Saša, and John Nelder, Nelder-mead
algorithm, Scholarpedia, Vol. 4, No. 7, 2009, pp.2928.

[19] Al-Masri, Eyhab, and Qusay H. Mahmoud,
Discovering the best web service, Proc. International

Conference on World Wide Web, May, 2007, pp.
1257-1258.

[20] Al-Masri, Eyhab, and Qusay H. Mahmoud,
QoS-based Discovery and Ranking of Web Services,
Proc. International Conference on Computer
Communications and Networks, Hawaii, United States,
Aug., 2007, pp.529-534.

[21] Al-Masri, Eyhab, and Qusay H. Mahmoud,
Investigating Web Services on the World Wide Web,
Proc. International Conference on World Wide Web,
Beijing, China, Apr., 2008, pp.795-804.

